

Presenters

Moderator:

Beth English, EE and Associates

Panelists:

Nick Olivares, Communications Strategies

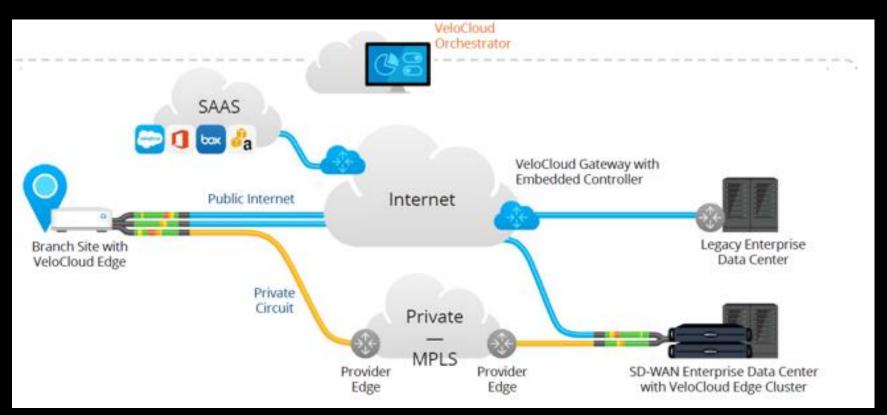
Tom Brannen, Cloud and Wire

What SD-WAN isn't

- It is not a new type of circuit
- It is not a standalone technology
- It is not Software Defined Networking (SDN) on the LAN

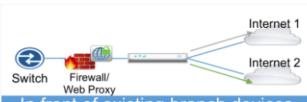
What SD-WAN is

- SD-WAN is a generic term which describes an overlay technology that provides advantages over traditional networks
- There are many flavors that fall into two general camps Cloud based/controlled and Hardware Peer to Peer
- It is implemented differently by different vendors, and features are not ubiquitous from one solution to the next
- Carrier based implementations (ie, Vonage, Masergy) are very different from Customer led implementations (ie, Cisco, Silverpeak, VeloCloud)


What are the advantages of deploying SD-WAN?

- Improves visibility, resiliency, bandwidth utilization, -How?
- Circuit aggregation, optimization and load balancing
- IP Failover
- Application basis for choosing routes
- Policy orchestration and deployment to all nodes
- Single touch provisioning for new nodes

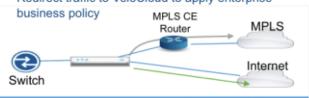
Bundled or with 3rd party management


- Many carriers sell SD-WAN as a bundled offering, providing both the overly and some of the underlying circuits
- In these cases, they book-end the connectivity to provide jumping off points to your private Data Centers and Branches, their private network and services (MPLS and SIP trunking), as well as access to various Cloud Providers (AWS, Azure, Salesforce, RackSpace, etc.)-can we refine this sentence
- Another option is to purchase circuits independently or reuse existing circuits and contract directly with Manufacturer/VAR to deploy. This is most often used as a WAN replacement project.

Sample Deployment Models

Deployment Strategies

Flexible Branch Topologies


In front of existing branch devices

- No impact to existing branch devices, e.g. firewall, proxy
- · Support migration path to virtual branch services

Co-exist with MPLS CE router

- Maximize performance and availability for hybrid WAN by co-existing with MPLS CE router
- · Redirect traffic to VeloCloud to apply enterprise

Multi-Path Includes MPLS

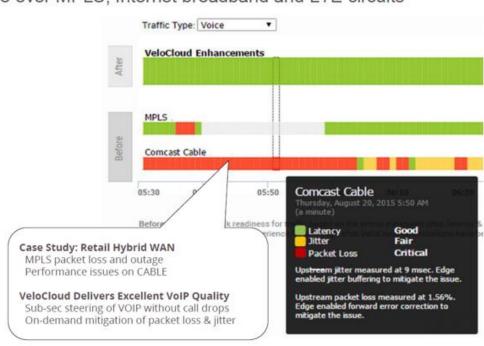
- · Co-exist with existing MPLS CE router
- Apply enterprise business policy for traffic through both MPLS and Internet

SD-WAN Performance Improvements

Assured Application performance over MPLS, Internet broadband and LTE circuits

Continuous Monitoring

Automatic capacity testing Continuous link & path quality monitoring


Dynamic App Steering

App aware per Packet Steering Virtualized: apps not tied to links Aggregated bandwidth for single flows Policies abstracted by service groups Backup link policy

On Demand Remediation

Error & jitter correction

Automatic steering for brownouts/blackout

SD-WAN Differentiators

																																								-	_	10	LAI		vi.		
																																			fost	ed V	lata		50	ount			ntaci			atr	IX loud
	ı	T.				w	ph t				Ľ	istic	Mine		III.			ne de la	200					W.			23								E	and a		fa:	e de la constante de la consta	a							
SUPPLIER W	CAPEX	OPEX 1 YEAR	OPEX 2 YEARS	OPEX 3 YEARS	BANDWIDTH RANGES	EST COST/WS	MANAGEMENT COMPLEXITY	UPGRADABLE	PLAT RATE PRICING	WAN OFTINIZATION	VOIP SESSION REASSIGNMENT	MPLS HYBRID CAPABLE	VPN TRAFFIC OPTIMIZATION	CENTRALIZED POLICY ENGINE SUPPORTS LEGACY WAN INTERFACE	PREMISE DECISION MAKING	CLOUD DECISION MAKING	BUILT-IN FIREWALL	INTRUSION PREVENTION	HOSTS OWN POPS	NUMBER OF POPS	INTERNATIONAL POPS	AWS	AZURE/MICROSOFT CLOUD	GOOGLE G-SUITE	HP HELION	IBM SOFTLAYER	NETSUITE	SALESFORCE	ARYAKA	BARRACUDA	BIGLEAF	CISCO IWAN	CLOUDGENDX	CRADLEPOINT	RCESSA	MULTAPPLIED NETWORKS	MUSHROOM	NETWOLVES VSE	PROTECTLI	RIVERBED	SILVER PEAK	SIMPLEWAN	VELOCIOUS PUBLIC GATEWAYS	VELOCIOUD PRIVATE GATEWAYS	VIPTELLA	VERSA	UNTANGLE
Districted 1					1.5M-5000	61.	LOW		1		9 6								9 6	12									ï							6	,										
				7	450M-1G	1CB	LOW										0		2																											į	9
		0 0	0 0		50H-1G 50H-1G	52 62	LOW	0		9 6	9 8			0 0	8	0 0		1	9 6	4					i.			9 5									8	Ů.									
			8	9	2M-200M	ICB	LOW				9 5				Т				9 5	28	8																										
					1.5M-1G	\$3	MID	8			9 6								3 5	2			8				6																				
				0	10M-1G	91	LOW			1						0				5		a					0 1	9 6																			
-				0	1.5M-1G	108	LOW	0									0		9 6	15																								0			
				9	50H-1G	\$1.1	6 LOW			9							0		9	17	7																							ſ			
					294-1G	1CH	LOW			1	9 0			0			0		2	2.		-													100												
	0	0	ō		10M-10G 10M-10G+	1CB \$0.5	POW	疆							0	-	8			3	1							9 6					8		1	0											

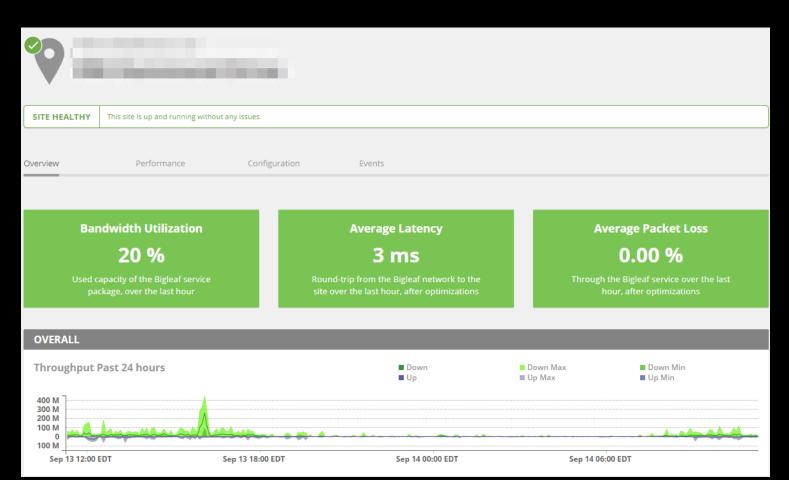
SD-WAN Differentiators

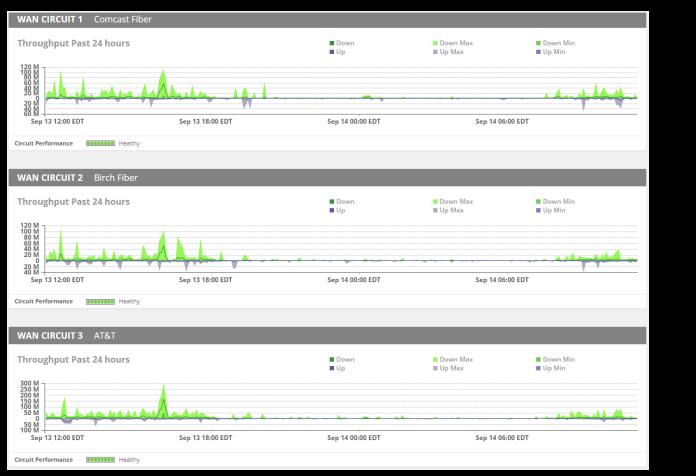
	S	<u>S</u>	8 8			WAN OPTIMIZATION	
8	6	8	8 8		•	SAME IP ADDRESS FAIL-OVER	п
8	8	8	8 8	8	•	VOIP SESSION REASSIGNMENT	
	8	8	8 8	8		MPLS HYBRID CAPABLE	ı
<u>S</u>	8	8	8 8	8	8	VPN TRAFFIC OPTIMIZATION	Œ
8	8	8	8 8	8	8	CENTRALIZED POLICY ENGINE	li
8	8		8 8		8	SUPPORTS LEGACY WAN INTERFACE	п
8	6		8 8	S	8	PREMISE DECISION MAKING	I.
8	8	8	8 8		8	CLOUD DECISION MAKING	ľ
	8	8		S		BUILT-IN FIREWALL	8
	8	8		8	•	INTRUSION PREVENTION	l
		8	8 8	S	•	AES-256 ENCRYPTION	E
8	S	8	8 8		S	HOSTS OWN POPS	

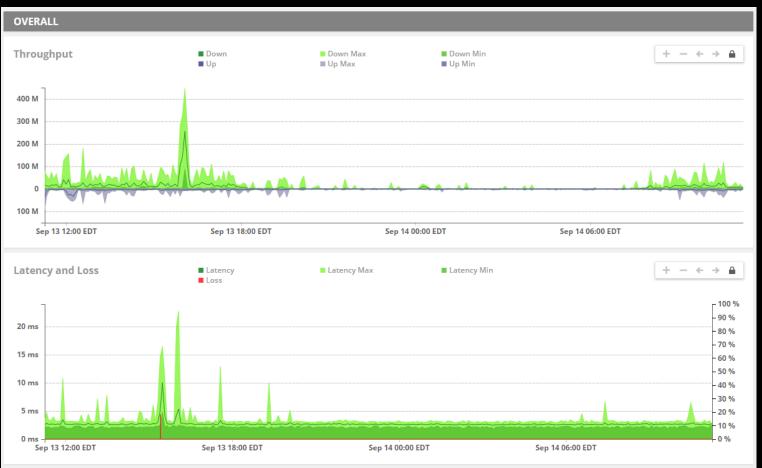
Ν

NUMBER OF POPS

INTERNATIONAL POPS


SD-WAN - Cloud Optimization




SD-WAN DEMO

Case Study 1- Health Insurance Provider

- Rapidly Growing , Multi-Location, Contact Center
- Problem
 - Network failures were causing contact center to go down
 - No insight into outages or voice quality issues
- Solution
 - SD-WAN 2 fiber connections and 1 coax connection
 - Carrier and physical carrier redundancy
 - Active/active/active
 - Monitored by internal NOC

Error Warning Resolved Info	☑ Con ☑ Birc ☑ AT&		Expand All Alarms Collapse All Alarms
splay results from	09/07/2018 to 09/1	EVENT	SEVERITY
Sep 13, 16:13 2018	Comcast Fiber	downlink loss alarm resolved.	RESOLVED »
Sep 13, 16:09 2018	Comcast Fiber	downlink loss alarm resolved.	RESOLVED »
Sep 13, 16:08 2018	Birch Fiber	downlink latency alarm resolved.	RESOLVED »
Sep 13, 15:37 2018	Comcast Fiber	downlink latency alarm resolved.	RESOLVED »
Sep 13, 15:35 2018	Comcast Fiber	uplink latency alarm resolved.	RESOLVED »
Sep 13, 15:28 2018	Comcast Fiber	downlink loss alarm resolved.	RESOLVED »
Sep 13, 15:28 2018	Comcast Fiber	uplink loss alarm resolved.	RESOLVED »
Sep 13, 00:24 2018	Birch Fiber	downlink jitter alarm resolved.	RESOLVED »
Sep 12, 16:33 2018	Birch Fiber	downlink latency alarm resolved.	RESOLVED »
Sep 12, 13:59 2018	Birch Fiber	downlink latency alarm resolved.	RESOLVED »
Sep 12, 13:10 2018	Birch Fiber	downlink jitter alarm resolved.	RESOLVED »
Sep 12, 11:22 2018	Comcast Fiber	downlink loss alarm resolved.	RESOLVED »
Sep 12, 11:20 2018	Birch Fiber	downlink latency alarm resolved.	RESOLVED »

Case Study 2- Retailer installs Carrier SD-WAN

Grocery retailer with 340 sites total including stores, distribution centers, Headquarters and Data Center.

Had MPLS over T1 or EoC with 3G wireless backup. 99.99% SLA = 24 minutes of downtime average per day. Was often higher than that.

Replaced with Sprint/VeloCloud managed SD-WAN with Public Internet over cable or DSL with 4G LTE wireless backup over Cradlepoint antennas.

Better visibility into performance at each store and stores are no longer even aware when the primary circuit fails.

Was able to either increase bandwidth by an order of magnitude (5-10x) while saving \$400,000 per year on WAN.

Allowed replacement of POTS lines at stores with VoIP for additional savings of \$100/store/month = \$400,000/year additional savings.

Case Study 2- Retailer installs Carrier SD-WAN

Benefits reported by the Client:

- Applications can be prioritized down to the packet level and balanced over multiple circuits.
- More cost-effective last mile services such as cable broadband and wireless services are now a viable option
- Immediate failover capabilities using technologies like dynamic path switching offers much improved reliability.
- Increased network visibility via embedded analytic tools
- Traffic is encrypted on both public and private networks for added security
- The solution can be provisioned and deployed relatively effortlessly and quickly (45 minutes plugn-play)

FAQ

- What is the difference between MPLS and SD-WAN?
- How does it handle QOS?
- How is SIP trunking provisioned?
- Do I get rid of my firewalls and routers?